	NMR DATA FOR	BIS-AMINE BH2+PF6- S	ALTS			
Aromatic protons						
Amine	CH _δ δ, ppm	δ , ppm (J, cps)	\mathbb{M}^{a}	¹¹ B resonance		
$(2-\text{pic})_2 BH_2 + PF_6$	2.68	H _{3,5} , 7.77	m	$22.3 \pm 1.1, J = 90 \text{ cps}$		
		H4,6, 8.27	m			
$(3-\text{pic})_2 BH_2^+ PF_6^-$	2.55	H ₅ , 7.80	Q	$23.1 \pm 0.8 \mathrm{b}$		
		H ₄ , 8.18 (8)	D			
		$H_{2,6}, 8.57$	bD			
$(4-\text{pic})_2 BH_2^+ PF_6^-$	2,58	$H_{2,6}, 8.53$ (6)	D	$19.2 \pm 1.1 \mathrm{b}$		
		H _{3,5} , 7.67 (6)	D			
$(2,3-lut)_2BH_2+PF_6^-$	2-CH ₃ , 2.63	$H_{5}, 7.60$ (6)	Т	20.0 ± 0.5		
	3-CH ₈ , 2.53	$H_{4,6}, 8.20$ (6)	D			
(2,4-lut) ₂ BH ₂ +PF ₆ -	2-CH ₃ , 2.62	H _{3,5} , 7.50 (6)	D	$22.0 \pm 0.8, J = 90 \text{ cps}$		
	4-CH ₈ , 2.57	H ₆ , 8.10 (6)	D			
$(2,5-lut)_{2}BH_{2}+PF_{6}-$	2-CH ₃ , 2.62	H ₃ , 7.63 (8)	D	$22.0 \pm 0.8, J = 90 \text{ cps}$		
	5-CH ₃ , 2.45	H4.6, 8.00	b			
(2,6-lut)2BH2+PF6 ^{-b}	2,6-CH ₃ , 1.88	H _{3,5} , 6.93 (8)	D	$26.6 \pm 1, J = 110 \text{ cps}$		
		$H_{4}, 7.46$	m			
$(3,4-lut)_2 BH_2 + PF_6^-$	3-CH ₃ , 2.43	H_{δ} , 7.62 (6)	D	$18.9\pm0.8\mathrm{b}$		
	4-CH ₃ , 2.50	H2,6, 8.4	b			
(3,5-lut) ₂ BH ₂ +PF ₆ -	3,5-CH₃ , 2.50	H ₄ , 7.97	bS	20 ± 2		
		H _{2.6} , 7.37	bS			

TABLE V

^a Symbols: M, multiplicity; S, singlet; D, doublet; T, triplet; Q, quartet; m, complex multiplet; b, broad. ^b In nitromethane.

marked differences, if any, in the reaction rates. Indeed, one should consider the possibility that replacement of iodide by the amines proceeds through ionization of the halogen in the rate-determining step. Although such a mechanism would seem rather unlikely in a medium of low polarity, it would explain the apparent uniformity in reaction rates. On the other hand, rate-determining nucleophilic displacement of iodide by amine can be reconciled with the synthetic results, if one considers the fact that alkyl substitution on pyridine produces only a relatively narrow range of basicities, perhaps not sufficiently large to produce differentiation in yields in the reaction times employed here. It is more noteworthy that even 2,6-lutidine reacts essentially completely to give a bis(lutidine)boron cation, in spite of the likelihood that in this compound the substantial crowding around the boron atom should hinder the formation of the product. It appears, therefore, that steric inhibition in any of the reaction steps (eq 1-3), which is probable when the amine is 2,6-lutidine, is not large enough to interfere with a successful synthesis of the bis-amine cation.

Acknowledgment.—Partial support of this research by the National Institutes of Health under Grant GM 13650 is gratefully acknowledged.

Contribution from the Mellon Institute and the Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

The Preparation of Germyl Methyl Sulfide and the Proton Nuclear Magnetic Resonance Spectra of Some Sulfur Derivatives of Silane and Germane¹

By JIN TSAI WANG AND CHARLES H. VAN DYKE

Received December 21, 1967

Germyl methyl sulfide has been prepared by the reaction of CH_3SNa with either GeH_3I or GeH_3Cl . Some of its physical and chemical properties have been determined. The compound is thermally stable at room temperature but decomposes in the presence of B_2H_6 or BF_3 to form GeH_4 and an unidentified solid material. The high-resolution proton nuclear magnetic resonance spectra of various sulfur derivatives of silane and germane have been obtained and are discussed.

Relatively few investigations on the synthesis and properties of sulfur derivatives of monogermane have ever been reported in the literature. The paucity of information on these systems is largely related to prob-

(1) Presented, in part, at the 154th National Meeting of the American Chemical Society, Chicago, Ill., Sept 1967.

lems associated with their synthesis, low volatility, and questionable thermal stability. Until recently, the only known derivative of this type was digermyl sulfide, $(GeH_3)_2S.^{2,3}$ Although a detailed Raman-infrared (2) S. Sujishi, Abstracts of the XVIIth International Congress of Pure and Applied Chemistry, Munich, 1959, p 53.

(3) T. D. Goldfarb and S. Sujishi, J. Am. Chem. Soc., 86, 1679 (1964).

study has been carried out on this compound,³ very few of its physical or chemical properties are known. In two previous communications, we reported proton nuclear magnetic resonance (nmr)⁴ and some Lewis base strength data⁵ for the new compound germyl methyl sulfide, GeH₃SCH₃. In the present paper we report more details on the synthesis and some additional properties of this compound.

Previous nmr work from this laboratory on some of the simple oxygen derivatives of silane and germane pointed out some unusual proton chemical shift trends.^{6,7} In order to see if analogous trends exist for the sulfur analogs, we have obtained high-resolution proton nmr data for most of the known sulfur derivatives of silane and germane.

Experimental Section

Apparatus.—All work was carried out in a Pyrex-glass vacuum system. Apparatus and techniques employed were identical with those previously described.^{7,8}

Materials .- Commercial CH3SH (purity confirmed by its infrared spectrum⁹), (CH₃)₂S (mol wt: found, 61.6; calcd, 62.1), and BF₃ (mol wt: found, 67.9; caled, 67.8; purity confirmed by its infrared spectrum¹⁰) were used after purification in the vacuum line. CH₃SNa was prepared from CH₃ONa and CH₃SH.¹¹ GeH₄ (mol wt: found, 76.6; calcd, 76.6; purity confirmed by its infrared spectrum¹²) was prepared from GeO₂ and NaBH4.13,14 GeH3Cl and GeH3I (purities confirmed by their infrared spectra¹⁵) were obtained by the reactions of GeH₄ with HCl^{16} and I_2 ,^{2,15} respectively. $(GeH_3)_2S$ (vapor pressure at 0°, 4.7 mm; lit.2,3 5.0 mm; purity confirmed by its infrared spectrum³) was prepared from GeH₃I and red HgS.^{2,3} SiH₃SCH₃ (vapor pressure at 0°, 105.2 mm; lit.17 105.2 mm; purity confirmed by its infrared spectrum¹⁷) was prepared by the reaction of CH₃SH with the (CH₃)₃N adduct of SiH₃1.¹⁷ B₂H₆ (purity confirmed by its infrared spectrum¹⁸) was prepared by the reaction of NaBH4 with H2SO4.19

Preparation of GeH₃**SCH**₃.—This compound was prepared by the reaction of CH₃SNa with either GeH₃Cl or GeH₃I. We recommend the use of GeH₃I, since it is much easier to purify than GeH₃Cl. GeH₃I (3.5 mmol) was condensed into a 250-ml round-bottom flask which contained approximately 1 g of freshly prepared CH₃SNa. The reaction flask was allowed to warm to room temperature, open to a trap maintained at -196° . All of the material which distilled out of the flask during the slow warming process was then condensed back and the procedure was repeated. This was done four times. No noncondensable material was formed in the reaction. The volatile products were then allowed to distil through traps at -46 and -64° and into a trap

(5) J. T. Wang and C. H. Van Dyke, ibid., 928 (1967).

- (8) G. A. Gibbon, J. T. Wang, and C. H. Van Dyke, *ibid.*, 6, 1989 (1967).
- (9) R. H. Pierson, A. N. Fletcher, and E. St. C. Gantz, Anal. Chem., 28, 1218 (1956).
- (10) J. Vanderryn, J. Chem. Phys., 30, 331 (1959).
- (11) A. H. Blatt, "Organic Syntheses," Coll. Vol. 11, John Wiley and Sons, Inc., New York, N. Y., 1943, p 345.
- (12) W. B. Steward and H. H. Nielson, Phys. Rev., 48, 861 (1935).
- (13) T. S. Piper and M. K. Wilson, J. Inorg. Nucl. Chem., 4, 22 (1957).
- (14) W. L. Jolly and J. E. Drake, Inorg. Syn., 7, 34 (1963).
- (15) D. E. Freeman, K. H. Rhee, and M. K. Wilson, J. Chem. Phys., 39, 2908 (1963).
- (16) L. M. Dennis and P. R. Judy, J. Am. Chem. Soc., 51, 2321 (1929).

at -196° . Most of the material remained in the trap at -64° and was identified as impure GeH₃SCH₃ by its infrared spectrum and gas chromatogram.²⁰ A second preparation of GeH₃SCH₃ was carried out with GeH₃Cl (5.7 mmol) before final purification of the compound was attempted. The combined crude samples of GeH₃SCH₃ were purified by gas chromatography employing a 5 ft \times ¹/₄ in. glass column packed with benzyl ether (20%) on Chromosorb W support (60–80 mesh). When operating the chromatograph at a 100 cc of helium min⁻¹ flow rate and a column temperature of 30°, the retention time of GeH₃SCH₃ was 6.5 min. The gas-phase molecular weight of the GeH₃SCH₃ recovered (4.23 mmol, average yield 46%) was 122.7 (calcd 122.7). Its melting point was $-97^{\circ} (\pm 0.4^{\circ})$. Anal.²¹ Calcd for CH₈-GeS: C, 9.79; H, 4.93. Found: C, 9.72; H, 4.90.

Vapor Pressure of GeH₃SCH₃.—The vapor pressures of GeH₃-SCH₃ at a number of temperatures were measured by a mercury manometer. The inner surface of the manometer had been pre-treated with a separate sample of GeH₃SCH₃ for several hours. Data are recorded in Table I. Vapor pressures in the range -50.2 to $+18.4^{\circ}$ are given by the equation

$$\log P_{\rm mm} = -\frac{1537.9}{T} + 7.1555$$

which gives an extrapolated boiling point of 87° , a molar heat of vaporization of 7040 cal, and a Trouton constant of 19.6 cal dcg⁻¹ mol⁻¹.

TABLE I VAPOR PRESSURES OF GeH₃SCH₃^a

P, mm				<i>─</i> −− <i>P</i> , mm−−−−	
Temp, °C	Obsd	Calcd	Temp, °C	Obsd	Calcd
-50.2	2.0	1.8	+18.4	76.9	76.0
-36.6	4.4	4.5	$+5.2^{b}$	43.0	42.7
-25.8	8.3	8.7	0.0^{b}	34.2	33.5
-20.3	11.2	11.8	-8.65	22.5	22.0
-17.8	13.3	13.6	-26.6^{5}	8.6	8.3
-12.8	17.8	17.7	-36.8^{b}	4.5	4.5
-4.2	27.2	27.4	-196^{b}	0	
+11.0	56.6	55.4			

^{*a*} Duration of the experiment was approximately 10 hr. The infrared spectrum of the sample at the end of the experiment was identical with that of the pure material. ^{*b*} Pressure observed on decreasing the temperature.

Thermal Stability of GeH_3SCH_8 .—A sample of pure GeH_3 -SCH₃ (0.12 mmol; vapor pressure at 0°, 34.0 mm; calcd, 33.5 mm) was allowed to stand at room temperature partly in the liquid phase and partly in the vapor phase in a 9-cc all-glass break-seal exposed to normal laboratory lighting conditions for 7 days. The sample remained colorless throughout this time period, and no noncondensable material was formed. The infrared spectrum of the GeH₃SCH₃ recovered (0.11 mmol; vapor pressure at 0°, 35.0 mm) was identical with that of the pure sample. No residue was observed in the break-seal tube.

Infrared and Mass Spectra of GeH_3SCH_3 .—The infrared absorption spectrum of GeH_3SCH_3 at pressures of 0.5 and 1.5 mm was determined on a Perkin-Elmer Model 137B Infracord spectrophotometer. A 10-cm gas sample cell fitted with KBr windows was employed for the measurements. The absorption maxima and some tentative assignments are given in Table II. The spectrum is shown in Figure 1.

The mass spectra of all germyl compounds are complex, mainly owing to the existence of five isotopes of germanium in significant natural abundance. A convenient way of providing information

⁽⁴⁾ J. T. Wang and C. H. Van Dyke, Chem. Commun., 612 (1967).

⁽⁶⁾ G. A. Gibbon, Y. Rousseau, C. H. Van Dyke, and G. J. Mains, *Inorg. Chem.*, **5**, 114 (1966).

⁽⁷⁾ J. T. Wang and C. H. Van Dyke, *ibid.*, 6, 1741 (1967).

⁽¹⁷⁾ B. Sternbach and A. G. MacDiarmid, J. Inorg. Nucl. Chem., 23, 225 (1961).

⁽¹⁸⁾ W. C. Price, J. Chem. Phys., 16, 894 (1948).

⁽¹⁹⁾ W. L. Jolly, "Synthetic Inorganic Chemistry," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1960, p 158; H. G. Weiss and I. Shapiro, J. Am. Chem. Soc., 81, 6167 (1959).

⁽²⁰⁾ Preliminary vpc separations were carried out by using a 20 ft \times $^{4/8}$ in. aluminum column packed with Carbowax 400 (25%) on Chromosorb W support (60-80 mesh) at 37°. A helium flow rate of 100 cc/min was maintained. Under these conditions, GeH₃SCH₈ had a retention time of 86 min. Small impurity peaks were observed at 4, 14, 24, and 47 min.

⁽²¹⁾ Analysis performed by Schwarzkopf Microanalytical Laboratory, Woodside, N. Y.

INFRA	RED ABSORPTIC	ON MAXIMA OF GeH ₃ SCH ₃
Cm ⁻¹	Tentative assignment	Analogy
3049 sh		
2979 w	C–H str ^a	
2891 sh		
2073 s	Ge–H str	2110 in $(GeH_{\mathfrak{d}})_2S^b$
1439 sh		
1433 w	CH₃ def	1440, 1320 in SiH ₃ SCH ₃ °
1322		
1308 ^{(u, w}		
1125 vw	Unassigned	
951 w	CH ₃ rock	963 in (CH ₃ S) ₄ Ge ^d
883 m .		
869	CoH dof	979 940 999 916 in (CoH) Ch
859 (^{u, m}	Gens der	872, 849, 823, 810 III (Gen ₃) ₂ 5 ⁻
828) d		
820∫ ^{a, vs}		
712 w	Unassigned	
694 w	C–S str	694 in $(CH_3)_2S^e$
		695 in SiH ₂ SCH ₂ °

TABLE II

^a L. J. Bellamy, "The Infrared Spectra of Complex Molecules," John Wiley and Sons, Inc., New York, N. Y., 1954. ^b Reference 3. ^c Reference 17. ^d K. A. Hooton and A. L. Allred, *Inorg. Chem.*, 4, 671 (1965). ^e I. F. Trotter and H. W. Thompson, J. Chem. Soc., 481 (1946).

Figure 1.—Infrared absorption spectrum of GeH_sSCH_s. Peak at 1601 cm⁻¹ is a polystyrene calibration.

about the major fragmentations of these compounds has been to group the peaks according to ions which have a common heavyatom skeleton.²² The heavy-atom skeleton is used as a label for the group. Thus, GeS⁺ refers to all ions between m/e 102 (⁷⁰Ge³²S) and 111 (H₃⁷⁶Ge³²S). The mass spectrum of GeH₃SCH₃, obtained on a Consolidated Electrodynamics Corp. Model 103 C mass spectrometer operating at 70 V, consisted of four major groups of peaks with the relative intensities: GeSC⁺ (100), GeS⁺ (87), Ge⁺ (69), and CS⁺ (27). Several weak peaks were observed in the m/e 150–160 region (possibly due to H₃GeSSCH₃) and also in the m/e 82–94 region (CGe⁺ rearrangement fragment).

Interaction of GeH₃SCH₃ and BF₃.—GeH₃SCH₃ (1.0 mmol) and BF₃ (1.0 mmol) were combined, mixed, and allowed to stand at -78° for 12 hr in a 5-cc all-glass break-seal tube. No noncondensable material was observed when the tube was opened; a white deposit which turned yellow after about 30 min remained in the vessel when all of the volatile products were removed. The latter could not be completely separated by lowtemperature fractionation, but were identified as GeH₄ and unreacted BF₃ and GeH₃SCH₃ by infrared spectroscopy.¹⁰⁻¹² A yellow-orange solid material continued to form in the traps as the fractionations were attempted. No absorptions which could be ascribed to GeH₃F were observed in the infrared spectrum of the products.¹⁵

Interaction of GeH_3SCH_3 and $(GeH_3)_2S$ with B_2H_6 .—The interactions of GeH_3SCH_3 and $(GeH_3)_2S$ with B_2H_6 were carried out in a small tube attached to a mercury manometer. In each case, the pressures of the individual components of the mixtures were measured in the reaction tube prior to any combination. The temperature of the mixtures was raised to -79° then lowered to -196° several times in order to facilitate mixing. At -79.0° , B₂H₆ was present in the gas phase; all sulfides were in the liquid phase.

When GeH₃SCH₃ (0.63 mmol) and B₂H₆ (0.34 mmol) were allowed to interact at -79.0° , the pressure of the system did not come to an equilibrium value but continued to increase slowly. After 7 hr the pressure was 123.9 mm and still increasing. The sum of the individual vapor pressures at this temperature was 99.3 mm. The volatile material (0.029 g) which distilled out of the reaction tube maintained at 130° could not be separated further in the vacuum line but was identified as a mixture of B₂H₆ and GeH₄ from an infrared analysis.^{12,18} On raising the temperature of the reaction tube to between -79 and 0° for 11 hr, an additional amount of GeH_4 (0.0148 g) was recovered. When the GeH₄ formation ceased, a yellow-white solid material remained in the reaction tube which, on pumping at room temperature, yielded a very small amount of unidentified volatile material, the infrared spectrum of which was very similar to the original GeH₃SCH₃. The solid material acquired an orange color on exposure to air and its infrared spectrum (KBr pellet) indicated both C-H and Ge-H bonds present. However, owing to the apparent instability of the material, it was not further characterized.

On combining $(GeH_3)_2S$ (0.72 mmol) and B_2H_6 (0.35 mmol) in a similar reaction system, a constant pressure of 96.8 mm at -79.0° was observed after 3 hr. An equivalent amount of pure B_2H_6 exerted a pressure of 98.0 mm at this temperature. The vapor pressure of $(GeH_3)_2S$ at this temperature is negligible. On lowering the temperature to -130.8° , the pressure of the mixture dropped to 44.5 mm after about 15 min. An equivalent amount of B_2H_6 exerted a pressure of 44.3 mm under these conditions. The mixture acquired a yellow color in the above studies. The material (0.011 g) which distilled out of the reaction tube maintained at -130.8° was mainly B_2H_6 with a small amount of GeH₄ (both identified by their infrared spectra^{12,18}). The material which remained in the vessel was unreacted $(GeH_3)_2S$ (~0.7 mmol; vapor pressure at 0°, 5.3 mm; lit. 5.0 mm; confirmed by its infrared spectrum³) and a very small amount of yellow solid material.

Proton Nmr Studies of $(CH_3)_2S$, SiH₃SCH₃, GeH₃SCH₃, and (GeH₃)₂S.—High-resolution proton nmr spectra of the listed compounds were obtained on a Varian Associates A-60 spectrometer operating at room temperature. Samples were sealed *in vacuo* in standard thick-walled tubes. Cyclohexane was used as solvent, with a drop of tetramethylsilane added as an internal standard; 90 and 20% concentrations (by volume) were studied; chemical shifts listed in Table III are extrapolated to infinite dilution. On changing the concentration from 90 to 20%, τ of the CH₃ groups increased by approximately 0.03 ppm, τ of the SiH₃ group by 0.02 ppm, and τ of the GeH₃ groups by approximately 0.09 ppm.

Results and Discussion

Synthesis and Properties of GeH₃SCH₃.—Germyl methyl sulfide has been prepared in good yield by the reaction of solid CH₃SNa with either GeH₃I or GeH₃Cl

$$CH_3SNa + GeH_3I \longrightarrow GeH_3SCH_3 + NaI$$
 (1)

Under the experimental conditions employed in this work, the pure compound was thermally stable and could be purified by gas chromatography. It is much more stable than the corresponding oxygen derivative GeH₃OCH₃, which was found to decompose even at temperatures below $-23^{\circ.8}$ It seems to be a general rule that germyl compounds derived from the second-

⁽²²⁾ S. Cradock, E. A. V. Ebsworth, G. Davidson, and L. A. Woodward, J. Chem. Soc., A, 1229 (1967).

row elements are more thermally stable than those derived from first-row elements. Thus $(GeH_3)_3P$ is known and has been characterized,²² whereas $(GeH_3)_3N$ has not been successfully prepared.²³ Although both $(GeH_3)_2O$ and $(GeH_3)_2S$ are known, the latter appears to be much more stable than the former.³ Little information is available on the relative thermal stabilities of GeH_3F and GeH_3C1 .

In the presence of B_2H_6 , both GeH_3SCH_3 and $(GeH_3)_2S$ decompose to form GeH_4 and an unidentified solid material. The decomposition takes place at low temperatures and is more rapid with GeH_3SCH_3 than it is with $(GeH_3)_2S$. Germyl methyl sulfide also decomposes in a similar manner in the presence of BF_3 .

Very little can be concluded about the decomposition of $(GeH_3)_2S$ from the results of the present work; however, Sujishi and Zafonte²⁴ have carried out a more detailed analysis of this decomposition. Their observations of GeH₄ formation from $(GeH_3)_2S$ in the presence of B₂H₆ are in agreement with ours, but a more detailed analysis of the products suggests that the formula of the solid material in the reaction is GeH₂S. The decomposition is given by

$$(GeH_3)_2 S \longrightarrow GeH_4 + GeH_2 S(s)$$
(2)

In the analogous GeH_3SCH_3 decomposition, since the solid material contained both C–H and Ge–H bonds, a reasonable reaction scheme which would qualitatively account for the results consists of intermolecular condensations of the type shown in eq 3. However, a

$$2\text{GeH}_3\text{SCH}_3 \longrightarrow \text{GeH}_4 + \text{GeH}_2(\text{SCH}_3)_2 \tag{3}$$

complete analysis of the condensation products has not been carried out.

The purpose of studying the interaction of B_2H_6 with $(GeH_3)_2S$ and GeH_3SCH_3 was an attempt to investigate the Lewis basicity of the sulfur atom in the Ge–S–Ge and Ge–S–C linkages. No base properties were detected under the conditions used and owing to the irreversible decomposition of the compounds in the presence of B_2H_6 , no further work was carried out. In the hydrogen-bonding studies previously reported for these compounds, no decomposition reactions were observed. The results indicated that both $(GeH_3)_2S$ and GeH_3SCH_3 are weaker bases than $(CH_3)_2S$, in accord with the present results. The relative basicities of the two germanium compounds could not be distinguished.

Proton Nmr Studies of Some Sulfur Derivatives of Silane and Germane.—Proton nmr data for $(CH_3)_2S$ and most of the known sulfur derivatives of SiH₄ and GeH₄ are given in Table III. The variation of the chemical shifts of the methyl protons in the CH₃SMH₃ (M = C, Si, and Ge) series of compounds is somewhat different from the variation of the methyl chemical shifts in the corresponding oxygen derivatives. In the oxygen series, the methyl resonance of $(CH_3)_2O$ is at the highest field $(\tau 6.79)^{25}$ while that of CH₃OGeH₃ is at the lowest

(24) S. Sujishi and L. Zafonte, private communication.

TABLE III Proton Nmr Data for Dimethyl Sulfide and Some Sulfur Derivatives of Silane and Germane

Compound	CH3	(±0.01) ^{<i>a</i>}	$J_{\rm H^-H'} (\pm 0.05),$ cps	J^{12}_{CH} (±0.5), cps
$(CH_3)_2S$	7.98		0.30^{b}	137.8
SiH3SCH3d	7.98	5.71	0.45	141.0
$(SiH_3)_2S^c$		5.65	0.70	
GeH3SCH3	7.95	5.52	0.60	140.3
$(GeH_3)_2S$		5.38	• • •	• • •

^a Values extrapolated to infinite dilution. ^b N. Van Meurs, Spectrochim. Acta, **19**, 1695 (1963). ^c E. A. V. Ebsworth and J. J. Turner, J. Chem. Phys., **36**, 2628 (1962), $J_{2^{29}SiH} = 224.0 \pm 0.3$) cps. ^d $J_{2^{29}SiH} = 218.5 (\pm 0.4)$ cps.

Figure 2.—Variation of the proton chemical shift of GeH_{s} compounds with the electronegativity of the substituent. For electronegativities we have used the "best values" of Pritchard and Skinner.²⁸

field (τ 6.51)⁶ and that of CH₃OSiH₃ (τ 6.58)²⁶ is intermediate, but closer to CH₃OGeH₃. In the sulfur series the methyl resonance of GeH₃SCH₃ falls to the low field of (CH₃)₂S by 0.03 ppm, but SiH₃SCH₃ and (CH₃)₂S have identical chemical shifts. Since both GeH₃SCH₃ and SiH₃SCH₃ act as weaker Lewis bases than (CH₃)₂S,⁵ the position of the methyl resonance is clearly not sensitive to changes in basicity of the sulfur atom in the molecules. The insensitivity of the CH₃S proton resonance to the nature of the group to which sulfur is attached has also been observed in the nmr study of (CH₃)₃SiSCH₃ and (CH₃)₃GeSCH₃.²⁷

Electronegativity considerations are normally of concern in the interpretation of chemical shift data.

(26) C. H. Van Dyke and A. G. MacDiarmid, Inorg. Chem., 3, 1071 (1964).
(27) K. A. Hooton and A. L. Allred, *ibid.*, 4, 671 (1965).

⁽²³⁾ F. G. A. Stone, "Hydrogen Compounds of the Group IV Elements," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.

⁽²⁵⁾ S. G. Frankiss, J. Phys. Chem., 67, 752 (1963).

Since oxygen is more electronegative than sulfur,²⁸ it is not surprising to find that the C–H, Si–H, and Ge–H proton resonances in the ether derivatives are found at lower fields than they are for the corresponding thio derivatives.²⁹ The difference in chemical shifts between the oxygen and sulfur systems is greatest for the C–H protons followed by Ge–H protons and the least amount of change is observed for the Si–H protons. This trend is also observed in comparing electronegativity and proton nmr data for the halide derivatives of CH₄, SiH₄, and GeH₄.³⁰

Ebsworth and Turner³¹ have pointed out that for a series of SiH₃ compounds, there is a general decrease of τ_{SiH} as the electronegativity of the substituent increases. A similar relationship is found for CH₃ compounds.³² However, plots of electronegativity *vs*. chemical shift values for the two series of compounds differ quite significantly.³¹ One of the key differences in the two systems occurs with the sulfur derivatives. The chemical

(28) H. O. Pritchard and H. A. Skinner, Chem. Rev., 55, 745 (1955).

- (29) We are grateful to Dr. Stephen Cradock and Mr. Gerst Gibbon for
- providing us with their unpublished (GeH₈)₂O (7 4.72) nmr data. (30) E. A. V. Ebsworth, S. G. Frankiss, and A. G. Robiette, J. Mol. Spectry., **12**, 299 (1964).

shift of $(CH_3)_2S$ is very close to that of CH_3I (sulfur and iodine have about the same electronegativity values, 2.5–2.6); however, the chemical shifts of $(SiH_3)_2S$ (τ 5.65) and SiH₃I (τ 6.56) are significantly different. In the present work, we wanted to ascertain the position of $(GeH_3)_2S$ with respect to GeH_3I . A plot of the proton chemical shifts of most of the known GeH₃ compounds vs. electronegativity of the substituents is given in Figure 2.³³ The pattern obtained is strikingly similar to that of the analogous plot for SiH₃ compounds.³¹ Thus, we conclude that when considering electronegativity effects alone, the chemical shifts of SiH₃ and GeH₃ compounds follow similar trends, which are different in certain respects from trends of simple carbon compounds. We prefer to delay an explanation of the differences until the factors which determine the Si-H and Ge-H chemical shifts are better understood.

Acknowledgments.—The authors are grateful to Professor Sei Sujishi for communications on the unpublished work of his research group and to Mr. Sam Wrbican for obtaining the mass spectrum. J. T. Wang wishes to thank the Mobay Chemical Co. for a research fellowship.

(33) Chemical shifts used are those obtained for dilute (5–10 % v/v) solutions of the compounds in cyclohexane.

Contribution from Baker Laboratory, Cornell University, Ithaca, New York 14850

Nuclear Magnetic Resonance Chemical Shifts of the Acid Protons in Silyl-Substituted Benzoic Acids and Phenols and the Question of $(\pi \rightarrow d)-\pi$ Interaction in the Silicon–Phenyl Bond¹

By D. E. FENTON and J. J. ZUCKERMAN²

Received December 22, 1967

The electrical effects of *para*- and *meta*-substituted trimethylsilylphenols and -benzoic acids have been investigated by nmr techniques designed to elucidate these effects in the ground-state, neutral molecules, and the data have been compared to those for phenol and benzoic acid themselves and for the *p*- and *m*-*t*-butyl derivatives. Results from measurement of the chemical shifts of the acidic protons of the substituted benzoic acids in an inert solvent (CCl₄) give the same order of hydrogen bonding as for the strong donor solvent pyridine: H > m- and *p*-*t*-butyl > *p*- and *m*-trimethylsilyl. For the analogous phenols the hydrogen-bonding strength in both types of solvents decreases, H > p-trimethylsilyl, but while *p*-trimethyl-silylphenol is weaker than *p*-*t*-butylphenol in dilute solution in carbon tetrachloride, the reverse order is observed in dimethyl sulfoxide.

We have been led to take an agnostic view toward supposed large $(p \rightarrow d)-\pi$ contributions to the bonds silicon forms with nitrogen on the basis of experiments involving nuclear magnetic resonance techniques.³ Apart from the silicon-nitrogen bond, convincing evidence for large π interactions in fourth-group bonds

 A preliminary report of this work was presented at the 153rd National Meeting of the American Chemical Society, Miami Beach, Fla., April 1967.
Author to whom inquiries should be addressed at the Department of Chemistry, State University of New York at Albany, Albany N. Y. 12203.

 (3) E. W. Randall, J. J. Ellner, and J. J. Zuckerman, J. Am. Chem. Soc., 88, 622 (1966); E. W. Randall and J. J. Zuckerman, Chem. Commun., 732 (1966); C. H. Yoder and J. J. Zuckerman, Inorg. Chem., 6, 103 (1967); E. W. Randall and J. J. Zuckerman, J. Am. Chem. Soc., 90, 3167 (1968). comes from studies of silicon-phenyl systems. Here the argument involves the electrical effect of silicon as a substituent. Current electronegativity tables agree that the silicon atom should donate electrons to the phenyl group. Should there be large $(\pi \rightarrow d)-\pi$ interactions in the silicon-phenyl bond, however, then this inductive electron release would be offset by the drift of π -electron density from the phenyl ring, and the result might be a net reversal of the expected electrical effect of the silicon atom.

In their classic paper Chatt and Williams reported the results of a careful study of the strengths of the acids

⁽³¹⁾ E. A. V. Ebsworth and J. J. Turner, J. Phys. Chem., 67, 805 (1963).

⁽³²⁾ H. Spiesecke and W. G. Schneider, J. Chem. Phys., 35, 722 (1961).